Incomplete Jacobian Newton method for nonlinear equations
نویسندگان
چکیده
منابع مشابه
Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems
We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems. Effectiveness of the proposed method is demonstrated through numerical experiments. Comparison of our method with Newton Iterative Method is also presented. Convergence of the Newton Iterative Method is highly sensitive to the initialization or initial guess. Reported numerical work shows the robustn...
متن کاملJacobian Computation-free Newton’s Method for Systems of Nonlinear Equations
We propose a modification to Newton’s method for solving nonlinear equations, namely a Jacobian Computation-free Newton’s Method . Unlike the classical Newton’s method, the proposed modification neither requires to compute and store the Jacobian matrix, nor to solve a system of linear equations in each iteration. This is made possible by approximating the Jacobian inverse to a diagonal matrix w...
متن کاملA new Newton-like method for solving nonlinear equations
This paper presents an iterative scheme for solving nonline ar equations. We establish a new rational approximation model with linear numerator and denominator which has generalizes the local linear model. We then employ the new approximation for nonlinear equations and propose an improved Newton's method to solve it. The new method revises the Jacobian matrix by a rank one matrix each iteratio...
متن کاملNew quasi-Newton method for solving systems of nonlinear equations
In this paper, we propose the new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but it is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires O(n) arithmetic operations per iteration in cont...
متن کاملOn Newton-hss Methods for Systems of Nonlinear Equations with Positive-definite Jacobian Matrices
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Mathematics with Applications
سال: 2008
ISSN: 0898-1221
DOI: 10.1016/j.camwa.2007.12.002